

Leishmaniasis in Europe & the Middle East: Vaccine trials Charles L. Jaffe

National Center for Leishmaniasis Kuvin Centre for the Study of Infectious and Tropical Diseases,

Dept. Microbiology & Molecular Genetics IMRIC, Hebrew University-Hadassah Medical School

Cutaneous

Israel

Brazil

Reservoirs

L. major is zoonotic small rodents like -

Psammomys obesus (fat sand rat), Meriones crassus (gerbil), Microtus guentheri (vole), others

L. tropica both zoonotic & anthroponotic

Hyraxes Rodents (Gundi, rats?)

Visceral leishmaniasis

Reservoirs

L. Infantum - zoonotic

Dogs, foxes and jackals

12/14/2016

Predicted risk of CL and VL Old World

Est. annual incidence Med, ME and Central Asia: VL 6200-12,000; CL 465,000-810,000 Alvar et al 2012. PLoS ONE 7:e35671

Upsetting the balance

- Environmental
 - climate
 - (Killick-Kendrick 1996. Bul Trop Med Int Health 4: 5)
 - reservoir hosts
 - Hares (Molina et al 2012. Vet Parasitol 190: 268)
 - Wild rabbits (Diaz-Saez et al 2014. Vet Parasitol 202: 119)
 - sandfly density
 - Italy (Maroli et al 2008. Trop Med Int Health 13: 256)
- Socio-economic
 - development
 - travel
 - Other diseases
- Political
 - Syria est. 100,000 cases (http://www.uossm.org/index.php/the-outbreak-ofleishmania/)

Endemic Countries for Cutaneous Leishmaniasis - 2012

http://gis.emro.who.int/leishmanya/atlas.html;

Why Vaccination?

- Control difficult or impossible
 - Vectors, Reservoirs
- Drugs unsatisfactory
 - Toxic
 - Expensive
 - Resistance
 - Don't work
- "Vaccines are the most effective method of preventing infectious diseases*"

*CDC, AMA, PMA - canada

Types of Vaccines

DNA

Recombinant proteins

Vaccines for human leishmaniasis

- Prophylactic vaccine
 - Vaccine to prevent disease
 - -1^{st} and 2^{nd} generation
- Therapeutic vaccine
 - Immuno (+chemo) therapy
 - Combine "vaccine antigens" with drugs
 - Cure active disease

Why is a vaccine feasible?

- Protection in animal models
- Humans
 - Strong immunity after recovery
 - Protection against re-infection
 - Many infected people don't develop disease
- Immunological requirements
- Genome sequenced
- Technology available

Vaccination works!! At least for cutaneous leishmaniasis

Leishmanization

- Prehistory
- Inoculation with live parasites
 - Russia 1937 1970's
 - Israel 1970' s
 - Iran 1982 -1989 ~ 2 million peop
 - Uzbekistan licensed mixture of l
- Protects against new infection
 - Nadim et al (1983) Bull Soc Pathol
 - 250 people, 47% had lesions; incul months
 - Incidence of natural disease afterv naïve controls
 - Khamesipour et al (2005) Vaccine
 - 11/11 protected

Problems

- Have the disease, lasts ~8-9 months
- 5-10% develop large sores >2 cm dia
- 3% of lesions last > 1year
- 0.02% of the lesions don't heal
- Up to 25% develop secondary infections
- Hypersensitivity, cheloid formation, psoriasis, immunosuppression re: other vaccines
- Need to make sure isolate is recent and virulent

Killed prophylactic vaccines

- 1940's
 - Failure in Middle East
 - Success in Brazil, 82% protection
- 1990's studies +/- BCG as adjuvant
 - Ecuador 72% efficacy
 - Iran Overall no protection, but see association between protection & LST conversion
 - Sudan same as Iran

Need better adjuvants, multiple injections Some success for therapeutic applications

Live Leishmaniasis Vaccines

- Genetically attenuated parasites
 - Protein kinase A (*LmPKA1*-/-)
 - Dihydrofolate reductase thymidylate synthase (*dhfr-ts* -/-)
 - Lipophosphoglycan (*lpg^{-/-}*)
 - Cysteine protease A and B (cys A^{-/-} or B^{-/-})
 - A2 gene cluster (A2 ^{-/-})
 - Amastigote specific Centrin gene (LdCen^{-/-})
 - Amastigote specific cytochrome c oxidase (Ldp27^{-/-})
 - L. tarantolae

L. major pka1^{-/-} null mutants are not virulent in BALB/c mice

Requirements for live vaccine

- Safe Normal & Immune compromised patients

 No disease or minimal side effects
- Stable, defined alteration and no revertants
- Not transmitted by sandfly
- Complete and long-term protection
 - No boosting needed
- No drop potency or efficacy with time or lots
- Problem GMP production

No human or animal by products

Live Leishmaniasis Vaccines

- Hira Nakhasi, FDA
 - Amastigote specific Centrin gene (LdCen^{-/-})
 - Amastigote specific cytochrome c oxidase (Ldp27^{-/-})
 - L. donovani mutants show cross species protection
 - Dey et al J Immunol Aug 25
 - LdCen^{-/-} parasites trigger stronger immune response than commercial CanL vaccine Leishmune[®]
 - >antibodies; >IFN-gamma; >CD8⁺ T-cell activation & <IL-4
 - Fiuza et al (2013) Vaccine 31:1785

What have we learned from preclinical and human studies?

So what's stopping us

- Th1 T-cell response
- Cytotoxic CD8⁺ T-cells

- Almost all licensed vaccines to date mediate protection via
 - Antibodies i.e., B-cell based

Types of Vaccines

DNA

Recombinant proteins

Second Generation Defined antigenic molecules

Defined Vaccine Antigens

- Leishmanolysin (gp63)
- **PAS-2** (Promastigote Surface Antigen 2 Complex)
- Dp72
- LACK (Leishmanial Receptor for Activated C Kinase)
- LeIF (Leishmanial Eukaryotic Ribosomal Protein)
- Lcr1(Leishmanial Flagellar Antigen)
- Ld23
- **KMP-11** (Lipophosphoglycan associated protein)
- A2 (Amastigote stage specific protein family)
- Many Others

Vaccines for human leishmaniasis

- Prophylactic vaccine
 - Vaccine to prevent disease
- Therapeutic vaccine
 - Vaccine to treat active disease
 - Historic use
 - Convit Venezuela autoclaved L. mexicana + BCG
 - Mayrink Brazil ; killed *L. amazonensis* ± chemo

Second Generation Vaccines

- IDRI recombinant fusion polypeptide
 - LeishF1/F2 (Leish-111f or Leish-110f) + MPL-SE adjuvant
 - Preclinical protection, and Phase I/II completed
 - LeishF3 + MPL-SE or GLA-SE adjuvant for VL
 - Preclinical and phase I in India and USA (2012)
- York Adenovirus vector
 - 2 Leishmania genes
 - Preclinical and Phase I completed
- Mologen DNA vaccine
 - LeishDNAVac 5 plasmids
 - Preclinical, no adjuvant, Ready for Phase I

IDRI - LeishF1/F2 + MPL-SE

- Protection
 - Preclinical
 - Prophylactic CL in mice & monkeys; VL in mice, hamsters
 - Therapeutic VL in dogs
 - Multifunctional CD4⁺ Th1-cell responses; IgG, IFN-γ, TNF and IL-2; T-cell epitopes in TSA and LmSTI1
 - Phase I
 - Prophylactic CL & VL (Velez et al 2009. Vaccine 28: 329 & Chakravarty et al. 2011. Vaccine 29: 3531)
 - Therapeutic CL & MCL (Nascimento et al 2010. Vaccine 28: 6581 & Llanos-Cuentas et al 2010. Vaccine 28: 7427)
 - Safe, immunogenic (IgG, IFN-γ & DTH) and well tolerated
 - Didn't protect dogs against VL (Gradoni et al 2005. Vaccine 23: 5245)

Therapeutic CL Trial - Brazil

LeishF1 + suboptimal chemotherapy (SSG)

Nascimento et al 2010. Vaccine 28: 6581

Improving the IDRI vaccine for VL

Leish-F3

- SMT
- Conserved in Leishmania species causing CL and VL

NH

- AA identity across species
 - nucleoside hydrolase (NH36) 84 99.7%;
 - sterol 24-c-methyltransferase (SMT) 86 99.7%
- Single antigens protect in mouse or hamster models
 - Polyfunctional CD4⁺ T-cells secrete IFN-γ, TNF, IL-2)
- Recognized by Human T-cells, *Ex vivo* responses
 - Asymptomatic CD4⁺ T-cells secrete IFN-γ, TNF, IL-2
- Phase I trial safe and immunogenic (Coler et al Clin Trans Immunol 2014. 4: e35.)

ChAd63-KH: a third generation therapeutic vaccine for VL/PKDL

Chimpanzee adenoviral-based vaccines

- > have been in clinical trials in over 1000 volunteers in seven countries
- have an excellent safety profile alone and in prime-boost combination
- ➢ induce highly potent immune responses (CD8⁺, CD4⁺ and Ab) in man

ChAd63

- > produced in suspension culture Procell 92 cell line for scalable manufacture
- > Safety and immunogenicity data available from other humans vaccine trials

UNIVERSITY ROBERT KOCH INSTITUT

Adenovirus vectors

- Advantages
 - Elicit > cell mediated immunity, cytotoxic T-cells
 - Infection of APC such as dendritic cells
 - Induce circulating and mucosal immunity
 - Ease of manufacture
 - Doesn't integrate into host DNA
 - Large number of human vaccines in clinical trials or development (safety and immunogenicity data)
- Disadvantages
 - Pre-existing immunity to wild type virus; 40-60% people in USA have Abs
 - Can't give two injections (get anti-Ad responses)
 - Limited number of genes can be incorporated
- 12/14/2016 Dose related toxicity

ChAd63-KH: clinical development

LEISH1: dose escalation prime only Phase 1 first-in-human, n=20 UK healthy volunteers

vaccines in development; average 2-3 Grade 1 or 2 AEs per subject; no grade 3/4 AEs.

response rate 85%; 40% with peak summed responses >1200 spots / 10⁶ PBMC

Osman et al, submitted

100% for 1 or more cytokines in at least 1 pool; response dominated by single cytokine producing cells

100

LEISH2a: dose escalation prime only Phase IIa safety study; n=24 Sudanese PKDL patients Trial start date: Nov. 2016

LEISH2b: prime only placebo controlled Phase IIb RCT; n=90 Sudanese PKDL patients Trial start date: late 2017 TBC

DNA Vaccination

Current DNA Vaccine Clinical Trials

DNA vs Protein

- Advantages
 - Stable, inexpensive & easily produced
 - Expression in native form & long lasting
 - CD4+ and CD8+ T-cell responses
 - Humoral immunity
- Potential disadvantages
 - Integration, little or no evidence
 - Autoimmunity, little or no evidence
 - Induction or breaking of tolerance to host proteins
 - Need to improve responses in humans delivery techniques and adjuvant inclusion
 - Antibiotic resistance on plasmid

LEISHDNAVAX Vaccine

RESEARCH ARTICLE

LEISHMANIA

2014. 6: 234ra56

Modular Multiantigen T Cell Epitope–Enriched DNA Vaccine Against Human Leishmaniasis

Shantanabha Das,¹* Anja Freier,²* Thouraya Boussoffara,³* Sushmita Das,⁴* Detlef Oswald,⁵ Florian O. Losch,² Melanie Selka,² Nina Sacerdoti-Sierra,⁶ Gabriele Schönian,² Karl-Heinz Wiesmüller,⁷ Karin Seifert,⁸ Matthias Schroff,⁵ Christiane Juhls,^{5†} Charles L. Jaffe,^{6†} Syamal Roy,^{1†} Pradeep Das,^{4†} Hechmi Louzir,^{3†} Simon L. Croft,^{8†} Farrokh Modabber,^{9†} Peter Walden^{2†‡}

Th1 Peptide

MIDGE – Th1 vector

No antibiotic resistance genes Minimum bacterial backbone

LEISHDNAVAX Vaccine

- Selection criteria
- KMP11, TSA, P74, CPA & tCPB
 - Conserved between different Leishmania species
 - "Antigenic complexity" i.e., different HLAs
 - Induce antigen specific T cell responses
 - Immunogenic in humans
 - CD4 and CD8 T cell responses, IFN-γ detected in cured VL and CL patients
 - Safe in animals

Mologen – LEISHDNAVAX

• Prophylactic protection in

Vaccines for Canine leishmaniasis

- Leishmune[®] (Fernades et al 2014 Vaccine 32: 128)
 - Licensed Brazil: fucose-mannose ligand glycoprotein (FML) + saponinbased adjuvant
 - >87.8% protection, adverse effects 2.2%, xenodiagnosis 5.1% +
- Leish-Tec[®] (Fernades et al 2014 Vaccine 32: 128)
 - Licensed Brazil: recombinant amastigote stage protein A2 + saponinbased adjuvant
 - >81.1% protection, AE 13.0%, xenodiagnosis 5.4% +
- CaniLeish[®] (Oliva et al 2014 PLoS NTD 8:e3213
 - Licensed in Europe: excreted-secreted proteins + saponin-based adjuvant
 - 92.7% protection, xenodiagnosis reduced transmission, minor AE 20%

• Letifend®

- Licensed in Europe: protein Q recombinant, no adjuvant
- 58% protection, xenodiagnosis not done, minor AE 10%

Problems

- Host responses vary (HLA-I and -II)
 - Variation immunogenicity
- Different requirements, different species
 - Gene variation & polymorphism in parasites
- Not understood what is needed for protective response in humans
- What to measure, no easy assays to monitor correlates of protection
- Potential drive selective pressure away from vaccine molecules
- Protection in animal models -

Final steps

- Phase I Is it safe, side-effects, immunogenicity
 - Completed LeishF1/F2, ChAd63-KH; In progress LeishF3
- Phase II expanded safety + immunogenicity
 - ChAd63-KH
- Phase III double-blind study of efficacy

1- Funding

Estimates

(

For prophylactic vaccine development \$150 – 500 Million, 10-15 years

Discovery	Preclinical	Clinical	Registration	Post-registration
5-10%	10-30%	60-80%	0.5%	1.5-3%
10 M	20 M	165 M	1 M	4 M

"little evidence that any positive results in animals correlates with efficacy in human beings"

Moorthy and Kieny (2010) Lancet Inf. Dis 10:204 Initiative for Vaccine Research, WHO