Malaria infection and resistance-associated mutations in pregnant women receiving sulfadoxine-pyrimethamine prophylaxis

<u>Emrah RUH</u>^a, Jean Paul BATEKO^a, Turgut IMIR^a, Aysegul TAYLAN OZKAN^{a,b}

UNIVERSITESI

^aNear East University Faculty of Medicine, Department of Medical Microbiology and Clinical Microbiology, Nicosia, Northern Cyprus

^bHitit University Faculty of Medicine, Department of Medical Microbiology, Corum, Turkey

Presentation no: PSS-07, International Symposium on Parasitic Zoonoses, Antalya, November 18-19, 2016.

MALARIA IS 100% TREATABLE AND PREVENTABLE

each year 655,000 people die from MALARIA 200,000 of these deaths are NEWBORNS 10.000 MOTHERS DIE

SIMPLE can save LIVES

PREVENTIVE MALARIA MEDICINE & ANEMIA SCREENING DURING PRENATAL CARE

USE OF BED NETS

Sources: WHO (2012). World Malaria Report. Geneva, Switzerland; http://www.who.int/malaria/high_risk_groups/pregnancy/en/

WHO: Intermittent preventive treatment in pregnancy with sulfadoxinepyrimethamine (IPTp-SP)

Increasing SP resistance...

Mutations in *Plasmodium falciparum* dihydrofolate reductase (*Pfdhfr*) and dihydropteroate synthase (*Pfdhps*) genes

Aim of the study: to detect the infection rates and *Pfdhfr/Pfdhps* mutations in pregnant women from Democratic Republic of Congo (DRC)

250 pregnant women from Bandundu city, the DRC, who received two doses of SP during pregnancy

Following delivery, blood samples were collected and applied onto Whatman filter papers

Nested PCR for identification *Plasmodium* species DNA sequencing of (+) samples for detection of mutations in *Pfdhfr* and *Pfdhps* genes

92 (36.8%) of 250 samples: *Plasmodium* spp. positive

Plasmodium species	n	(%)
P. falciparum	87	94.5
P. falciparum + P. vivax	2	2.2
P. falciparum + P. malariae	1	1.1
P. vivax	2	2.2
P. ovale	0	0.0
P. knowlesi	0	0.0
Total	92	100.0

P. falciparum (+) samples (n: 90) \rightarrow DNA sequencing

56 samples: successfully sequenced for *Pfdhfr*

56 (100.0%) samples: one or more mutations

Dfdhfr mutation	Mutation number		
Pjunjr mutation	r	(%)*	
N51I	46/56	82.1	
C59R	35/56	62.5	
S108N	56/56	100.0	

*Row percentage

N: Asparagine (Asn), I: Isoleucine (IIe), C: Cysteine (Cys), R: Arginine (Arg), S: Serine (Ser)

Resistance to pyrimethamine (*Pfdhfr* gene): Primary mutation at codon 108 Augmented by mutations at codon 16, 51,59 and 164¹

N51I, C59R and S108N mutations are widespread in Africa²

Our results are consistent with previous findings

¹Sharma et al., 2015 ²Heinberg and Kirkman, 2015

67 samples: successfully sequenced for *Pfdhps*

66 (98.5%) of 67 samples: one or more mutations

Dfdbps mutation	Mutation number		
Pjunps mutation	n	(%)*	
A437G	66/67	98.5	
K540E	1/67	1.5	
A581G	1/67 1.5		

*Row percentage

A: Alanine (Ala), G: Glycine (Gly), K: Lysine (Lys), E: Glutamic acid (Glu)

Resistance to sulfadoxine (*Pfdhps* gene): Primary mutation at codon 436 or 437 Augmented by mutations at codon 540, 581 and 613¹

A437G and K540E mutations are widespread in Africa²

Our results are consistent with previous findings

¹Sharma et al., 2015 ²Heinberg and Kirkman, 2015

48 samples: sequenced for both *Pfdhfr* & *Pfdhps*

48 (100.0%) of samples carried multiple mutations

Pfdhfr gene	Pfdhns gene	Mutation no	
Juliji Belle	i junpo gene	n	(%)
N51I, S108N	A437G, K540E, A581G	1/48	(2.1)
N51I, C59R, S108N	A437G	22/48	(45.8)
N51I, S108N	A437G	17/48	(35.4)
C59R, S108N	A437G	6/48	(12.5)
N51I, C59R, S108N	No mutation	1/48	(2.1)
S108N	A437G	1/48	(2.1)
	otal	48/48	(100.0)

Multiple mutation combinations in *Pfdhfr* and *Pfdhps* are associated with treatment failure¹

Triple mutation in *Pfdhfr*, plus A437G mutation in *Pfdhps* were detected at high rates (45.8%)^{2,3}

Triple mutation in *Pfdhps* (A437G, K540E and A581G)⁴ was detected at low levels (2.1%)

¹Sharma et al., 2015 ²Chico et al., 2015 ³Heinberg and Kirkman, 2015 ⁴Taylor et al., 2014

Conclusions:

SP propyhlaxis failed to protect 36.8% of the pregnant women against malaria

Continuous monitoring of SP resistance is important

Number of SP doses may be increased to have better outcomes of the IPTp-SP^{1,2}

More effective drugs should be considered

¹WHO, 2014

²Likwela et al., 2012

Acknowledgements:

This study was funded by Near East University (Grant No: SBE/14-174), Hitit University (Grant No: TIP19002.14.005) and Deniz Medikal.

The molecular tests were performed at BM Labosis, Ankara and Macrogen Laboratory, the Netherlands.

Thank you for your attention...